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For one-dimensional unimodal maps ha(x):l--,I, where I=EXo, Xl] when 
2 = 2m~x, a binary tree which includes all the periodic windows in the chaotic 
regime is constructed. By associating each element in the tree with the super- 
stable parameter value of the corresponding periodic interval, we define a dif- 
ferent unimodal map. After applying a certain renormalization procedure to this 
new unimodal map, we find the period-doubling fixed point and the scaling 
constant. The period-doubling fixed point depends on the details of the map 
h;~(x), whereas the scaling constant equals the derivative h';.ma~(xo). The thermo- 
dynamics and the scaling function of the resulting dynamical system are also 
discussed. In addition, the total measure of the periodic windows is calculated 
with results in basic agreement with those obtained previously by Farmer. Up 
to 13 levels of the tree have been included, and the convergence of the partia] 
sums of the measure is shown explicitly. A new scaling law has been observed, 
i.e., the product of the length of a periodic interval characterized by sequence Q 
and the scaling constant of Q is found to be approximately 1. 

KEY WORDS: Nonlinear dynamics; chaos; one-dimensional unimodal maps; 
bifurcation; universality; renormalization: scaling; partition function; fixed 
point; Hausdorff dimension. 

1. I N T R O D U C T I O N  

One of the most important goals of studying chaos is to find universalities. 
In one-dimensional unimodal maps universalities are well exhibited. For 
example, the Feigenbaum exponent 6 which describes the rate of con- 
vergence of bifurcation point toward the accumulation point is universal. (1) 
Furthermore, applying a renormalization operation to a one-dimensional 
quadratic map, it is found that this operator has a unique fixed point. 
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If we denote by f~. a one-dimensional quadratic map such that 

xn+, =A(x.)  (1) 

then the period-doubling fixed point is defined as 

g ( x ) = l i m  lim , a, ( ~ )  (ff~) = (~) f , ~  (2) (c~) f ~ , r  lira ,, 2, 

and satisfies the renormalization equation 

The constant c~ is calculated numerically to be 

= -2.502907875... (4) 

Sullivan (3) showed that i f f e  C 1, f ( x ) ~ x 2 + f ( O )  for x ~ 0  and if the 
fixed point g(x )  exists, then it is universal. 

There is another explanation of the constant e. At the superstable 
parameter 2n, the critical point 0 is in the orbit. Let dn be the distance of 
0 to the nearest point in the orbit at )~, Then dn/dn+l converges to c~. (1) 

In this paper we study one-dimensional unimodal maps, but in the 
chaotic regime, i.e., for parameter value 2 greater than the accumulation 
point of the period-doubling bifurcation. In the next section, we will show 
how to construct a binary tree which includes all the periodic windows in 
this chaotic regime. Each periodic window contains a periodic interval and 
all its doublings. By computing the superstable parameter corresponding to 
this periodic interval, we get a binary tree composed of numbers on the 
parameter axis. Viewing this binary tree as a result of bifurcation of some 
unimodal map, one interesting and important goal is to find the period- 
doubling fixed point g(x )  and the corresponding scaling constant e. In 
Section 3 we show the renormalization process and numerically compute 
the period fixed point g(x )  and scaling constant e of this special dynamical 
system for three different maps, 

h~(x) = a -  x 2 (5) 

h~(x) = r sin(~x) (6) 

Ft 
~ x ,  O<<.x<~b 

hu(x) = ~,. b ~ x <~ 1 - b (7) 

kt ( l - x ) ,  b<~x<. l  
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We will use ,~ to denote the generic parameter hereafter. )'max is defined as 
the largest parameter such that hx(x) maps I =  R into L The point xo is 
defined as the left endpoint of h~max(X ). F o r  example, for map (5), 2rnax = 2 
and Xo = - 2 ;  for maps (6) and (7),)Cmax = 1 and Xo=0. We shall also 
discuss the thermodynamics and the scaling function of this system. 

As we know, within the chaotic regime there are infinitely many 
periodic windows. If we were to remove them, only the chaotic part 
characterized by positive Lyapunov exponent would be left. A natural 
question to ask is whether there is anything left after this operation, in 
other words, what is the measure of the chaotic orbits on the parameter 
axis, or what fraction of the parameter values are chaotic? 

Based on the denseness of the periodic intervals, one would be 
tempted to say that chaos occurs only on a set of measure zero. This is 
already known to be wrong because of work of Jakobson (5) and the 
numerical results by Farmer. (6) 

Jakobson (s) proved for the two classes of maps ( i ) f~ (x )=  2f(x), where 
0 < 2 ~ < 4  and fj~(x) is sufficiently close to ,)~x(1-x) in C3([0, 1], [0, 1]), 
and (ii) f~(x) = 2f(x) (mod 1 ), where f is C 3, and f(1 ) = f (0 )  = 0, f has a 
unique nondegenerate critical point in [0, 1], that the set of parameter 
values ,~ for which fj~ has an invariant measure absolutely continuous with 
respect to Lebesgue measure has positive (Lebesgue) measure. 

Jakobson's work is significant in the sense that it is rigorous, but it 
could not give further details concerning the magnitude of the measure or 
any scaling law concerning the behavior of this measure. 

In 1985 Farmer (6) computed the chaotic fraction and the "fatness 
exponent" for two maps, 

xk +i = fr(x~) = r( 1 - 2x~) (8) 

xk + ~ = f~(xk) = r sin(zxk) (9) 

In both cases, r s [0, 1 ]. 
Defining h(e) to be the sum of all the periodic windows whose width 

is greater than or equal to e and # (e )=  1 - h ( e )  [/~(e) is thus a staircase 
function], he argued that near e = 0 ,  /~(e) could be approximated by a 
smooth function. For  quadratic maps of intervals, he conjectured that #(e) 
asymptotically scales as a power law in the limit as e --, 0, i.e., 

#(e) -~/~(0) + A~ B (10) 

where y(0) is the true measure of chaotic parameters, and A is a constant. 
The "fatness exponent" fl is defined as 

/3 = lim log[/~(~) - #(0)]  
~ o  log e (11) 

822/59/5-6-12 
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Taking advantage of the symbolic sequences of the periodic orbits, he 
computed #(5) by using almost all of the roughly 4000 periodic intervals of 
size greater than 10 .8 and found that for map (8),/~(0) = 0.89795 _+ 0.00005 
and //=0.45_+0.04, while for map (9), #(0)=0.8929+0.0001 and / /=  
0.45-t-0.04. Based on the results, he conjectured that the value of // is 
universal for a given order of maximum. 

Later Umberger and Farmer (7) computed #(0) and // for maps of 
different orders of maximum. 

In this paper we study map (5) on the chaotic regime [-1.401155 .... 2] 
as well as Farmer's map (8). We compute the chaotic measure of both 
maps, and find essential agreement with Farmer's p(0) a n d / / f o r  map (8) 
and find the same//, within error limits, for map (5). We have gone further, 
to study the scaling of the measure of the periodic intervals on the chaotic 
regime. The results of #(0) and/~ as well as the new scaling law are presen- 
ted in Section 4. In Section 5 we present a summary of all the results. 

2. N U M E R I C A L  C O M P U T A T I O N  S C H E M E  

The details of this section are all known, but we will sketch them for 
the convenience of the reader. 

After introducing the symbolic sequences of a periodic interval, 
Metropolis etal. (8) showed that for a large class of one-dimensional 
unimodal maps, there exists a universal set of sequences (or patterns) U 
such that there is a one-to-one correspondence between these sequences 
and all the periodic intervals. Derrida eta/. (9) then introduced the law of 
self-similarity, which says that any composition of sequences in U is also in 
U and the composition preserves the ordering relation. The sequence 
corresponding to a periodic interval is defined following ref. 8. 

For  a given parameter value, if f i (0)>0,  then le t /~i= R; if f i (0)<0,  
let/~i = L; if f i(0) = 0, let #~ = C (0 is the critical point). Then the sequence 
at this parameter will be #1#2 "'" if no ~t~= C and it is #1/~2 ' " # k  if k +  1 
is the smallest integer greater than 1 such that ~tk + 1 = C. If a sequence does 
correspond to a periodic interval, it is called allowed and the length of the 
sequence is finite. Not  all combinations of R, L, and C are allowed; for 
example, all the allowed sequences of length greater than 2 must begin with 
RL. We say a sequence is even if there is an even number of R's in it; 
otherwise it is odd. The harmonic H(P)  of a sequence P is defined to be 
P R P  if P is even and P L P  if P is odd. We also define H Z ( P ) =  H(H(P)) ,  
etc. Similarly, we define the antiharmonic A ( P ) =  PL P  if P is even and 
A(P)  = P R P  if P is odd and correspondingly Ai(p). 

We shall arrange the sequences, or periodic intervals, in a binary tree 
constructed as follows, according to a theorem of Metropolis et aL(8): From 
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two sequences P1, P2s  U, P I < P 2  (in the sense that the parameter 21 
associated with P1 is less than 22 associated with P2), we find an inter- 
mediate sequence as the common beginning part of the sequence H~(PI) 
and A~176 denoted by H~(P1)/x A~(P2). The starting points are the 
first bifurcation accumulation point 2o [ = 3.569945... for the logistic map 
and =1.40115518909... evaluated by Feigenbaum for map (5)] with 
Pi=H~(R)=RLR3LRLRLR3... and the last parameter )~max [-=4 for 
the logistic map and =2  for map (5)] with Py=RL ~176 [=A~(RL~)]. 
Applying the rule quoted, we find easily the intermediate sequence 
P1 = RL, which is the first level of the tree. The second level is Ha(R)/x 
A~(RL)=RLRR and H~(RL)/x RL~176 The rest of the tree is 
constructed similarly. 

For the following analysis we need the superstable parameter value 2o 
for a periodic interval of period p defined by fPo(C)= c, where c is the 
critical point of the map (i.e., the point at which f~ attains its maximum). 

After the binary tree is obtained, the length of each periodic interval 
can be computed by the following three steps: 

1. First find the superstable parameter value )~0 associated with 
sequence P. This can be done by using the bisection method as described 
beow and the following theorem. (4) As defined previously, we say a 
sequence P~ ~ U is greater than P2 E U if the superstable parameter of P~ is 
greater than that of P2. Thus, we have defined a linear ordering on the set 
of all periodic sequences U by the ordering of the superstable parameters. 

Let P I = P * # I " ' "  and P2=P*#2 . . . ,  where P*=PI/~ P2. Further, 
define R > C > L. 

In If P* is even, we say P1 < P2 if ~1 < ~2. 

2. If P* is odd, we say PI <P2  if #1 >/~2. 

The definition extends the ordering relation to all the sequences. Now 
let 2i _be the parameter value of Pi and let 2y correspond to Ps" Take x = c 
and )0= (2~ +,~2)/2 as the initial condition, where 21 =2 ,  and 22=2  s. 
Iterate f ;  and thereby construct a sequence P'. Stop when the first charac- 
ter of P' disagrees with the known sequence PC. If P < P', let 22 = )~ and 
leave 21 unchanged. If P>P', let 21 =/~ and leave 22 unchanged. Then 
repeat the above process until a stopping criterion which specifies the 
precision is satisfied. 

2. Using 20 as obtained above and x = c as the initial conditions, find 
the left endpoint of the periodic interval by the two-dimensional Newton 
method, i.e., solve 

fP(x)=x (12) 

D~fP(x) = 1 (13) 
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The left endpoint is the solution of the above set. By the construction of the 
binary tree all the harmonics (i.e., period doublings) of the basic sequence 
have been excluded. If we want to include their contribution, we need to 
find the accumulation point of doubling for each sequence, that is, the right 
endpoint of each periodic interval which can be computed following step 3 
below. In this sense a sequence in U represents a periodic window which 
includes all the harmonics of the interval. On the other hand, a sequence 
can just represent itself, i.e., a period pth orbit (if the length of P is p - 1). 
We shall also need the right endpoint of this "single" interval in this study. 
It can be obtained by solving Eq. (12) and the equation 

Dxf~(x) = - 1  (14) 

3. Construct the first k harmonics of P, i.e., H(P), H2(P),..., Hk(P), 
where k varies for different P according to their length (i.e., period) and 
machine character capacity, and compute as in step 1 the corresponding 
superstable parameter values 2k. Making use of the fact that 

Ak -- ~k 1 
---,5 

2k+1-2k  

where 6 is one of the Feigenbaum exponents, r the right endpoint of the 
periodic window can be approximated by 

(~k--'~k 1) ~ _ ( ~ k - - A k - 1 ) +  . . .  (15) 
2R = 2~ + 6 6 2 

2R = )~ + 2k ~ 2 k -  1 (1 _--11/5) (16) 

3. R E N O R M A L I Z A T I O N  A N D  THE RESULTS 

For a one-dimensional unimodal map ha(x), if at parameter ,~ the 
system x,  +1 = h~(x,) is periodic with period k, there exists a neighborhood 
of 2 for which the system is also periodic with the same period. We call this 
a periodic interval. As mentioned in the previous section, any periodic 
interval can be represented by a sequence of letters composed of R, L. 
Given two different sequences, a third sequence in between (in the sense of 
the parameter) with minimal length or period can be constructed. From the 
sequences corresponding to 2oo and 2max (=  the largest parameter such that 
h~. maps I c  ~ into I), we can construct a binary tree of sequences which 
would exhaust all the periodic "windows" in the chaotic regime. Each 
sequence can be represented by the superstable parameter value of the 
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Leve I 

2 

RLR3LRLR LR3... RL ~ 

" ~  RL ~ /  
RLR2 J / ~ / ~ /RL~ 

3 RLR 3 RLR2LR RL2R RL 3 

Fig. 1. The first three levels of the binary tree. 

periodic interval. Thus, we have a binary tree consisting of parameter  
values. 

Labeling the points in the rth level of the binary tree as in Fig. 2, 
where the right half are obtained by multiplying the previous level by 2 and 
the left half are obtained by multiplying previous level by 2, adding t, and 
reversing the order, define 

x/+l=fr(x/), l = 0  ..... 2 r 1 - 1  (17) 

Letting the limit Offr as r ~ oe be f ~ ,  numerical computations show that 
for r>~ 8, f r  is a very good approximation tofo~. Notice that we are making 

j ---% 
1 0 

~ YX 
1 3 2 0 

1 5 7 3 2 6 4 0 

001 !01 iii 011 010 Ii0 i00 000 

Fig. 2. The binary tree labeled by the subscript of its elements and the binary expansion. 
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the comparison between the level r of the binary tree and the superstable 
parameter 2r of the quadratic map. The rth level of the binary tree can be 
viewed as the bifurcation orbit of some unimodal map f at parameter r. 
Similar to the previous renormalization process, we first take the limit 
r ~ oo (it is equivalent to taking the limit 2r ~ ) ~  in the previous case). 
Then let the number of iteration o f f ~  go to infinity. The nth iterate offoo 
is defined as f ~ .  We show f ~  and its first and the second iterates for map 
(5) in Figs. 3-5, respectively. 

It is seen from these figures that f ~  is a unimodal map from 
[J,~, 2ma x] into itself. It does not have the nice feature of smoothness of a 
quadratic map. Because of the complexity here, we have to choose a dif- 
ferent renormalization approach. An obvious choice is to retain the peak 
which keeps most characteristics of the corresponding one in the previous 
iterate. For  this reason we use the rightmost peak in each iterate. 

Zeroth  I terate  

Fig. 3. The graph off~ for map (5). 
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The numerical computation scheme is as follows: since f8 is already a 
good approximation to f ~ ,  we stop at the level n = 8 ,  which has 256 
points, and make the plot o f f ~  according to Eq. (8). The rightmost peak 
of the first iterate o f f ~  is given by the rightmost 256 points of the follow- 
ing level, i.e., the ninth level. Likewise, the rightmost peak of the second 
iterate is obtained from the rightmost 256 point of the tenth level ..... In this 
way we can compute as many iterates as we like by just concentrating on 
a branch of the binary tree. 

The convergence is very fast here. The fifth iterate, which is shown in 
Fig. 6 for map (5) (the data points have been extrapolated), is already a 
good approximation to the fixed point. If we denote the rightmost peak of 

2~ 2 .  
a s f~ .R ,  thenf~,e is a map from In into itself, where I, = [2 (n), 2]. The 

value of 2 (n) gets closer to 2 as n increases. By a simple coordinate transla- 
tion, we can shift the point (2 (n),)in)) to the origin. Let x~a x be the critical 

First Iterate 

Fig. 4. The first iterate off~, i.e.,f~, for map (5). 
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2 n n 
poin t  of the f ~ , R  and  dn be the dis tance between Xma x and  the po in t  in 
the orb i t  closest to it. The values of  1 n / n+l  2 2 n n r n = x . . . .  x . . . .  rn =foo,R(Xm~x)/ 
f2,+1( n ~ 3 dn/d~+ are l isted in T a b l e I .  oe,RtXmaxJ~ and  r n = 1 

I t  is seen f rom Table  I that  all three ra t ios  converge r e ma rka b ly  well 
to e = 4.000000..., which is exact ly  the der ivat ive of hxm,x at  the left endpo in t  

X 0 �9 

W e  have also c o m p u t e d  the l imits 

'~max - -  j~(n) 

rn--•max__ 2(n+ l ) (18) 

for m a p  (6), and  for m a p  (7) in the case of b = 0.4 and b = 0.2. In all three 

cases the l imits are exact ly  h'max(Xo), namely,  c~ = ~ for m a p  (6), and  c~ = 2.5 
and  c~ = 5 for m a p  (7) with b = 0.4 and b = 0.2, respectively. 

\ 

a5 
Y 

S e c o n d  I t e r a t e  

Fig .  5. T h e  s e c o n d  i t e r a t e  o f f ~ ,  i.e., f4~o, fo r  m a p  (5).  
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If we examine the symbolic sequences of the nth level and (n + 1)th 
level of the subtree (i.e., the rightmost 256 sequences of each level of the 
symbolic binary tree) for large n, we find that the sequences at the (n + 1)th 
level are obtained by adding an L to the corresponding ones after the first 
R in the previous level, i.e., the nth level. When 2 ~n) increases to 2 ~+ ~), h~ 
increases so that another L is added from the sequence P1 corresponding 
to 2 ~n) to form the sequence P2 corresponding to 2 ~n+l). Examples of P~ 
and P2 are shown in Table II. The sequence corresponding to ) / ~ ) =  )'max 
is R L  ~176 As the number of iterations n increases, the parameter values of the 
subtree get closer and closer to 2ma x. Therefore the sequences of this sub- 
tree get more and more similar to R L  ~. When n is large enough, as men- 
tioned above, only one L is added from the sequence of one level to form 
the sequence of the next. This process can be seen to depend mainly on the 
slope of hz at the left endpoint, since the majority of the L points are con- 

Fifth Iterate 

Fig. 6. The rightmost peak of the fifth iterate off~ for map (5). 
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Tablel .  Convergence of the Scaling Constant for Map (5) 

1 2 3 
rn Pn rn 

2 3.8077682695888520809 3.5441854060035116563 4.0133945339208604147 
3 3.9901636869690091338 3.9483346750336176113 4.0761'878217352171634 
4 4.0407753272614629430 4.0635553766421511287 4.0329646571576748021 
5 3.9935538774560288326 3.9848278793407860822 4.0214917126991557875 
6 3.9930896143533401147 3.9863913291596478189 4.0057552362680068389 
7 3.9946007211673347841 3.9898760871826001013 4.0015380519756216424 
8 3.9962298005893949194 3.9930576799082365042 4,0004095971470468253 
9 4.0016510027031824196 4.0029808870688501849 4.0001086905181428164 

10 4.0003887390392266206 4.0007009311110452948 4.0000287469118949200 
11 4.0000962213534595010 4.0001733204120354695 4.0000075804050993628 
12 4.0000240802505799041 4.0000433350555137338 4.0000019935281811335 
13 4.0000060422615927655 4.0000108640295424118 4.0000005229893130226 
14 4.0000015171038121519 4.0000027253707291892 4.0000001368991833142 
15 4.0000003809722066034 4.0000006837955667206 4.0000000357627622612 
16 4.0000000956709662525 4.0000001715691122770 4.0000000093251823590 
17 4.0000000240249609029 4.0000000430477706629 4.0000000024274185511 
18 4.0000000060330601047 4.0000000108008431560 4.0000000006308853790 
19 4.0000000015149709363 4.0000000027099376206 4.0000000001637290309 
20 4.0000000003804192704 4.0000000006799162198 4.0000000000424341787 
21 4.0000000000955239553 4.0000000001705870153 4.0000000000109840174 
22 4.0000000000239857733 4.0000000000427987435 4.0000000000028399665 
23 4.0000000000060226408 4.0000000000107376852 4.0000000000007333915 
24 4.0000000000015122068 4.0000000000026939264 4.0000000000001882541 
25 4.0000000000003797132 4.0000000000006758705 4,0000000000000474228 
26 4.0000000000000953612 4.0000000000001695243 4.0000000000000201188 
27 4.0000000000000239118 4.0000000000000430799 3.9999999999999540143 
28 4.0000000000000050594 4.0000000000000083310 4.0000000000002299286 
29 4.0000000000000038548 4.0000000000000052617 4.0000000000000000000 
30 4.0000000000000038548 4.0000000000000631400 3.9999999999919065126 

Table II. Examples of Sequences Related by the Presentation Function 

P1 P2 P3 

RL9RL 6 R L  I~ 6 RL9R2L 6 
RLgRLSR RLI~ RLgR2LSR 
RLgRL4R 2 RLI~ RLgR2LaR 2 
RL9RL4RL R L  I~ RLgR2LaRL 
RLgRL3RZL R L  I~ RLgR2L3R2L 
RL9RL3R 3 RLI~ RL9R2L3R 3 
RLgRL3RLR RLI~  RLgR2L3RLR 
RL9RL 3RL 2 R L  I~ 3RL 2 RL9R2L3RL 2 
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centrated there. Oa r  results and the above argument lead us to conjecture 
that the scaling constant defined here equals the derivative or slope 
h'm~(Xo). 

Letting v = h~max(Xo) , we shall show in the following that 

1 ln()~max _ ) (n))  ~ - I n  v 
N 

as n ~ oe (19) 

where N > n  is an integer such that N = m + n ,  and m can be taken as a 
fixed integer. In the following we shall assume that n ,> 1. Letting 5, = 
2 ( , + 1 )  2(,), we could approximate the portion of the map close to the left 
or right endpoint by a linear function as shown in Fig. 7. Letting the first 
L points corresponding to the sequences of 2 (n+ 1) and 2 (~) be x] "+ 1) and 
x] "), respectively, we have 

x(,) ,.(,+1) K6, (20) 1 - - ~ 1  

I 

h~(~ 

r4~ 
Fig. 7. Illustrative picture for the derivation of Eq. (19). 
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where K is a constant equal to the absolute value of the slope of the 
straight line approximating h~,~ ~ h~m,~ at the right endpoint (Fig. 7). 

Suppose that for x <<. s h~(x)  can be approximated by a linear map 
with derivative v and there are N of the L's in P~ and N +  1 of the L's in 
P2 whose values are less than s Then for e ~ 1, 3C1, C2 E (s - e, s + e) such 
that 

X]n)=C1Y -N  (21) 

x]n+ 1) = C2v-~N+ l) (22) 

Combining Eqs. (20)-(22), we have 

y - N c =  (~n 

o r  

. ~ ( n +  1) __ • (n )  = CY -N (23) 

Fig. 8. The first iterate of the period-doubling fixed point g, i.e., g(g(x)), for map (5). 
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where C is a constant. Since 

(~(k+[)  ~(k ) )=~(oo)  ) ( n ) = C ] )  N 1 + - + ~ 5 +  . . . .  C'v -N 
n I) 

where C' is a constant, by taking the logarithm of above equation, we have 

ln(2 ~ - 2  (n/)= ln(2max-2 (n)) N - l n v ~ - l n v '  n ~ o o  

which is Eq. (19). It will further give the convergence of (18) as the level 
n ---> o0, 

A plot o fg (g (x ) )  for map (5) is shown in Fig. 8. Now 2m~ X is the fixed 
point of the renormalization operation. Thus, in order that the period- 
doubling fixed point g(x) satisfy an equation like Eq. (3), we will have to 

J 

Fifth Iterate 

Fig. 9. The period-doubling fixed point for map (6). 



1280 Ge et  aL 

make a coordinate transformation so that 2ma x is the origin. Then g(x) 
satisfies 

where c~ = h'max(Xo). The period-doubling fixed points for maps (6) and (7) 
with b = 0.4 are shown in Figs. 9 and 10, respectively. It is seen that g(x) 
depends on the details of the unimodal maps while the scaling constant 
equals exactly the derivative of h;.m, x at the left endpoint. 

Starting from the point x = 0 and defining 

xr = gr(O) for r~>l (25) 

we get a set of points which are the trajectory of g(x) under the initial con- 
dition x = 0. These points can be described by the intervals covering them. 
The crudest approximation is to cover it by [x l ,  Xo], which is called the 

\ 

/ 

\ 
\ 

\ 

Fifth Iterate 

Fig. I0. The period-doubling fixed point for map (7) with b=0.4. 
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first level. A better approximation would be to cover it by two intervals 
[x l ,  x3] and [x2, Xo] as the second level. We can get better and better 
approximations when the level n increases. Since 

and 

we can define 

x2r= g2r(0)= (g2)r (0)=~-~gr(0)=C~ % 

X 2 r +  1 = g2r+ 1 ( 0  ) = g(gZr(0))= g(o~--lXr) 

x(n + 1) = Fo(x~n)) (26) 2r 

x ( ,  + 1) = F I ( x ~ , ) )  (27) 2 r +  1 

where Fo = c~- 1 and F 1 = g o c~- 1 
The map E composed of Fo  1 and F~ 1 is the presentation function 

introduced previously by Feigenbaum. (1~ As seen in Fig. l l ~ [ m a p  (5)], 

Fig. 11. The presentation function E for map (5). 
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unlike the situation in the renormalization for the quadratic maps, here 
Fo 1 instead of F11 is a straight line with slope e. This results from 
the different renormalization procedure we use here. As pointed out by 
Feigenbaum, ~11) the forward dynamics generated by the period-doubling 
fixed point g is the same as the backward dynamics generated by the 
presentation function E. 

In Table II, some sequences of level seven and eight are given. F0 is 
obtained by plotting the superstable parameters of Pz 'S  against those of 
Pl'S. From the results of the previous section [Eq. (19)], we know that 
c~= v =h;.m~(Xo). Accordingly, FI is obtained by plotting the superstable 
parameters of P3's against those of Pl'S. As shown in the table, P3 can be 
derived from the corresponding P~ by adding an R after the second R 
in P1. 

When we are doing the renormalization operation, we keep only the 
rightmost peak, i.e., we focus only on the rightmost subtree of the binary 
tree. We will label this subtree by the binary expansion as seen in Fig. 2. 
The scaling function of a point in the orbit is defined as (H) 

X O e m  " - - eO - -  X l s m  " " " eO 

a(em-'' e0) - (28) 
X s m g m  1 " " " gO - -  X s m g m  1 " " " ~ 0  

The result of the scaling function of the subtree is shown in Fig. 12. As seen 
in the figure, the scaling function is almost a constant (=0.33). The scaling 

0.6 

O 

r 

0 . C  - 

,.00 

A 
Z~ 

ZX A ZX 

ZX 

0 , 2 5  0 . 5 0  0 , 7 5  1 . 0 0  

Fig. 12. The scaling function ~ for map (5) plotted against the normalized subscript of the 
points in the orbit. 
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function for map (7) is a constant, 0.28576 and 0.166667 for b = 0.4 and 
b--0.2, respectively. The scaling function for map (6) is shown in Fig. 13, 
and can be described by a piecewise constant function. 

Feigenbaum m) proved that for quadratic maps if Fo is piecewise linear 
(F 1 is linear), then the scaling function is piecewise constant. Here F o is 
linear, but F1 is not piecewise linear. The numerical results still agree with 
the proof. 

The scaling function compares the size of two adjacent points in the 
orbit of a certain level with that of two corresponding points in the orbit of 
the previous level. The uni;eersal constant c~ is the scaling factor governing 
the distance of any point in the orbit relative to the origin after one 
iteration. Both of them indicate that there exists a constant scaling in this 
system. 

Because of the similarity between the sums used to compute the 
Hausdorff dimension and the partition sum in thermodynamics, the term 
"partition sum" will be referred to, (12~ 

N 

ZN(fl) = Z l~ (29) 
i=1  

where N =  2 ~- t and li is the length of a pair of adjacent points in the nth 
level of the binary tree. 

Suppose, for fl = D, 
lira ZN(D) = O(1) (30) 

N ~ c o  061 
O 

[.~ o.3 

r 
(/3 

I A 

i 

O.0J 
0.00 0,25 0.50 0.75 1.00 

Fig. 13. The scaling function a for map (6) plotted against the normalized subscript of the 
points in the orbit. 

822/59/'5-6-13 
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Then D is an upper bound of the Hausdorff  dimension Dx.  D is the 
Hausdorff  dimension if the covering is optimal. 

In the present situation in N corresponds to the thermodynamic 
degrees of freedom, and so the quantity which has a finite limit is 

1 
qN(fl) = ~ in ZN(fl) (31) 

When/?  = D, Eq. (30) becomes 

lim qu(D) = 0 (32) 
N - - *  co 

We have computed qN(fl) for n = 8,..., 13 where N =  2"-~. The results 
are shown in Fig. 14. One conclusion we can draw from the figure is that 
there is no phase transition occurring in the system. It is seen from the 

~ . 0  n 

0.6 

0.0 

-0 ,5  

-1 .0  

13 

12 

11 
10 

. . . . . . . .  

" ' - ' ~ ' ~  . . . .  8 

- 1 . 5  �9 
0,0 

Fig. 14. 

. . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  

0.5 1,0 1.5 2.0 

Beta 
The "partition function" [map (5)] plotted against the "temperature" for 

n = 8,..., 13. 
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figure that as n increases, qN(fl) also increases. Since there is no gap in the 
presentation function, it is certain that the Hausdorff dimension of this 
system is 1. 

4. THE SCALING OF MEASURES OF PERIODIC INTERVALS 

From Section 2 we know that the binary tree is infinite, with the num- 
ber of periodic intervals doubling as the level increases from n to n + 1. 
How will the size or length of the nth level of the binary tree behave as n 
goes to infinity? [-The numerical results in this section are obtained for map 
(5) unless otherwise specified.] 

One easy experiment is to consider some special periodic intervals 
such as R L  ~ which is numerically found to be the smallest interval of 
period n + 2. (Here "small" refers to the length.) Also, R L  ~ is the rightmost 
sequence of level n in the tree. Now, following the proceduresin the last 
section, the length of the single periodic interval R L  ~ is computed. In 
Fig. 15 the ratio of the length of R L  ~+~ to the length of R L  ~ is plotted, 
with the variable being the period of R L  ~. As the period increases, the ratio 
goes to a number, 0.0625, which is much less than 1. For the sequences like 
R L R  ~ similar calculations are performed. The resulting curve is shown in 
Fig. 16. Notice that the ratio converges to a different number, 0.3549, and 
it is also less than 1. For sequences like R L R R R ( L R )  ~, behavior similar to 
Fig. 16 is observed, the ratio being approximately 0.33. 

For the periodic interval represented by R L  ~, let the left endpoint be 
2~ ") and the right endpoint be 2(e ~). The critical point 0 is no longer in the 
periodic orbit of )~(r ~) or )~). Instead, x* or x* in the neighborhood of 0 is 
in the orbit, respectively, for 2~ "~ and 2(e "). Starting from x* or x*, we can 
construct also a symbolic sequence. (4~ Letting x (~ x (~ be the first point L , R 

and x~ ), x~ ) be the second point in the construction, respectively, we have 

Therefore, 

= 

_ = - 

L ~ \ R ! \"~L ! 

x~ )-.x(L 1~ is negligible compared to the second term in the above expres- 
sion; hence 

~ ) _  ( n ) ~  (0) 2 
~ ( X R  ) 2 
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(A) The ratio of the length of the periodic interval R L  "+l to that of RL" ,  plotted 
against the period of RL".  (B) The illustrative graph for deriving Eq. (34). 
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Similar to the a rgument  in deriving E q .  ( 2 0 ) ,  3 C ~ ,  C2 such that  

X(1R ) = C1 Y-N 

x ~ =  G v  -u  

where C~ and C2 are constants ,  n = N +  m, where m is fixed and v is the 
left-hand derivative of hxmax. It  is easy to see that  2C] and C~ such that  

x(OR)= 2__ C,1 v N 

X(L0) = 2 __ C~V N 

We have 

Z~")-Z(~),.~2(C'z-C'~) v N+ [(C~,)2_(C,)2] y - - 2 N  [(Cr2)2 (Cti)2 ] y--2N 

Therefore,  

1 
2N ln(2~") - )o~n)) ~ - l n  v n ~ ~ (33) 

which gives for m a p  (5), 

1.O 

0 , 9 '  

0.8" 

0.7' 

o.~ 
o 

-F,4 

"~0.6 

0.4 �84 

0.2' 

o.1 �84 

Fig. 16. 

m(RLn+l) v 2=0 .0625  (34) 
m(RL n) 

A 
s 

A 

A 
A 

A A A A A A s 1 6 3  

O . C ]  - �9 - , - �9 - . - . - , - , - . - , �9 , - . - . - , - 

8 lo la 14 16 ~8 zo ea e4 e6 e8 ao aa a4 a6 

P e r i o d  

The ratio of the length of the periodic interval RLR"-I  to that of RLR', plotted 
against the period of RLR'. 
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The analysis for the other sequences such as RLR n is more com- 
plicated and will not be given here. The above computation is done for 
only some special sequences. The result still gives us evidence that the sum 
of the length of level n will go to zero as n goes to infinity. 

Another interesting experiment is to make use of the law of internal 
similarity (9) and examine the relationship between the scaling constant and 
the length of a "single" periodic interval. The composition �9 of two allowed 
sequences P and Q = #1#2""#k  (#i = R, L) is defined as 

P* Q= P'clP%...PrkP 

where ri =/~e if P is even and r~ = ~ if P is odd (/~ = L and vice versa). By 
the law of internal similarity, for any allowed sequences P and Q, P �9 Q is 
also allowed. Therefore, the sequences P, P �9 Q, (P �9 Q) �9 Q = P �9 Q,2, 
p ,  Q,3 .... are also allowed. Let 2n be the superstable parameter values 
corresponding to P �9 Q*", and define 6,(Q) as 

6.(0 ) = ~ - 2 .  1 (35) 

and 8', as 

m(P �9 Q*") 
6',(0) - (36) 

m(P , O*(n+ 1)) 

where m ( P ,  Q,n) refers to the measure of the single period interval 
represented by P ,  Q,n. 

Let P be any allowed sequence and Q = R. The past numerical 
results (1) show that the sequences fin(R) and 6'n(R) converge to 8 = 4.6692..., 
where 6 is the Feigenbaum exponent and is independent of P, Since R is 
the only period-2 sequence, there is only one doubling sequence. In other 
words, the bifurcation of a sequence is generated only by its composition 
with R infinitely many times. 

Now consider the only period-3 sequence RL, and let Q = RL. By con- 
structing P �9 Q*" = P �9 (RL)*", we get a sequence of tripling sequences. 
The corresponding 6n(RL) and 6',(RL) converge to another scaling 
constant 6RL=55.247 (9) which is independent of P. There are two 
period-4 periodic intervals. One is RLR, which is just R �9 R, so that the 
scaling constant of the sequence with Q = RLR is the square of the scaling 
constant of Q = R .  Another is RLL, the scaling constant of which is 
981,595. We checked that 6.(Q) and 6'.(Q) have the same limit in both 
cases, independent of P. 

This can be understood by Feigenbaum's result, (1) 

, ~ ( u )  - ; 4 0 )  ~ a(u) ~ 
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where u is the stability, i.e., u =  DxfP(x). Then the endpoints A~ and A, c 
obey A ~ = 2 , ( -  1) and A~ = 2,(1). Thus, 

A ~ -  A2~ [a(-1)-a(1)]  6 " 

Hence we see that 6;,(Q)~ 6Q. 
Therefore, for any sequence P, P ,  Q, P ,  Q,2 ..... where P and Q are 

arbitrary allowed sequences, fin(Q) and 6',(Q) converge to the same limit 
and they are independent of P. Hence a sequence Q can be characterized 
by the scaling constant of the sequence and by its length. 

In Table III the length of some sequences and the corresponding 
scaling constants are listed. It is seen from the table that the "shorter" the 
length, the larger the scaling constant, which indicates that for a fixed 
sequence P the length of P �9 Q depends on the length of Q as Q varies. If 
the length of Q is larger, so is the length of P *  Q. The product of the 
length and the scaling constant for the sequences listed in the table is very 
close to 1. While all the sequences with period less than 7 are included, 
only some of the sequences of period 8-10 have been chosen arbitrarily, 
Due to the limitation of the computer in handling characters, only the first 
three elements of the sequence {6,(Q)} were computed, so these results are 
to be considered only indicative. 

Let 6,(Q)=m(P, Q*~)/m(P, Q,(.+I)) and g)n(Q)ofQ as n ~ o o .  
The numerical results can be summarized as 

o r  

6Qm(Q) ~ 1 (37) 

m(P * Q,n) m(Q) 
~ 1  as n ~ o o  (38) 

m(P * Q,(,+ II) 

As the period of the sequence Q increases, Eq. (35) becomes more 
accurate and also the convergence 6,(Q)--, g)Q is faster. 

Let S, be the sum of the nth-level periodic measure and 7", be its 
partial sum up to level n, i.e., 

T , = ~  Sk 
k = l  

In Figs. 17 and 18 the partial sum Tn vs. level n is plotted for maps (5) and 
(8), respectively. For  map (5) the computation is done up to level 13 with 
a total of 8191 periodic windows. The result is T~ = 0.0605 + 0.0002. For  
map (8) it is done to level 12 with 4095 periodic windows, with T~ = 
0.0165_0.0001. As seen in these figures the partial sum in both cases 
converges as the level increases. 
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Table III. The Length, Scaling Constants, 
and Their Product for Some Sequences 

Per iod  Pa t t e rn  Q Leng th  re(Q) 6Q 6Qm(Q) 

2 R 0.5000E00 0.4669E + 1 2.335 

3 RL 0.1853E - 1 0.5525E + 2 1.024 

4 RLR 0.1181E00 0.2180E + 2 2.575 

RLL 0,9870E - 3 0.9816E + 3 0.9688 

5 RLRR 0.4039E - 2 0.2555E + 3 1.032 

RLLR 0.7781E - 3 0.1287E + 4 1.001 

RLLL 0.5813E - 4 0.1693E + 5 0.9841 

6 RLRRR 0.5041E - 2 0.2184E + 3 1.101 

RLLRL 0.8693E - 2 0.2184E + 3 1.899 

RLLRR 0.1176E - 3 0.8508E + 4 1.001 

RLLLR 0.3560E - 4  0.2802E + 5 0.9975 

RLLLL 0.3562E -- 5 0.2791E + 6 0.9941 

7 RLRRRR 0.6946E - 3 0.1447E + 4 1.005 

RLRRLR 0.4472E - 3 0.2254E + 4 1.008 

RLLRLR 0.9848E - 4 0.1017E + 5 1.002 

RLLRRR 0.4380E - 4 0.2284E + 5 1.000 

RLLRRL 0.2839E - 4 0.353 E + 5 1.002 

RLLLRL 0 . 1 5 6 9 E -  4 0.636 E + 5 0.9979 

RLLLRR 0.5979E - 5 0.1672E + 6 0.9997 

RLLLLR 0.2050E - 5 0.4874E + 6 0.9992 

RLLLLL 0 . 2 2 1 2 E -  6 0.451 E + 7 0.9976 

8 RLRRLRR 0.1731E - 3 0.583 E + 4 1.009 

RLLRLRR 0.5087E - 4 0.1968E + 5 1.001 

RLLRLRL 0.3801E - 4 0.265 E + 5 1.007 

RLLRRRL 0.2676E - 4 0.3729E + 5 0.9979 

RLLRRRR 0.9824E - 5 0.1018E + 6 1.000 

RLLLLRR 0.3526E - 6 0.2835E + 7 0.9996 

9 RLRRRRRR 0.1039E - 3 0.960 E + 3 0.9974 

RLRRRRLR 0.1266E - 3 0.792 E + 3 1.002 

RLLRRRLR 0.4016E - 5 0.2491E + 6 1.000 

RLLLRLLR 0.1518E - 5 0.6584E + 6 0.9995 

RLLLRRLL 0.3486E - 6 0.287 E + 7 1.000 

10 RLRRRLRLR 0.9235E - 3 0.111 E + 4 1.025 

RLRRRRRLR 0.2242E - 3 0.4523E + 4 1.024 

RLLRRRRRL 0.1341E - 5 0.7454E + 6 0.9996 

RLLLRRLRL 0.9955E - 7 0.1005E + 8 1.000 
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It is conjectured that Tn converges as n ~ ~ with the same asymptotic 
behavior for maps of the same order of maximum. This is supported by 
Fig. 21 which shows the normalized partial sum vs. n for map (5) (the 
data points represented by A) and for map (8) (the data points repre- 
sented by +). 

For map (5), a~=1.401155 and amax=2. The percentage of the 
chaotic orbits in the chaotic regime is 

(amax-a~)- T~ #(o) = 

a m a x  - -  aoo  

#(0) = 0.8990 + 0.0003. 
For map (8), roo=0.837005 and rmax=l. The percentage of the 

chaotic orbits in the chaotic regime is 

(rmax-- r~) - -  T~ 
#(0) = 

r m a  x - -  too  

and #(0) = 0.8985 +__ 0.0007. 
Farmer included all the windows with length greater than 10 8 for 

map (8). Twelve levels have been computed here. It is certain that some 
periodic windows with length greater than 10 8 have not been included. 
Our results of #(0) could be a little overestimated. In any event, our result 
is consistent with Farmer's result, # (0)=  0.89795_ 0.00005, within stated 
error. 

Next, we want to determine the critical exponent /~ defined by 
Eq. (11). Because we used the tree construction, we really know #n(e), i.e., 
only periodic windows that appear in the first n levels of the binary tree are 
taken into account. Obviously, 

# . (0 />  #(~) 

and 

# , (e )~H(e)  as n ~ o o  

Figure 19 shows A#n(e ) = # n ( ~ ) - p ( 0 )  for map (5) with n = 10 and n = 11. 
Similarly, Fig. 20 shows Aplo(e) and A#12(e) for map (8). Because of the 
logarithmic scale, the graphs are essentially straight lines with slope/~. The 
reason for the deviation from the straight line for ~ ~< 2 -17 is that n -- 12 is 
not large enough to include all the intervals with length bigger than or 
equal to e and some of these intervals appear on the lower levels of the 
binary tree. As n increases, this deviation gets smaller, suggesting that it 
disappears in the limit of n ~ ~ as Farmer conjectured. The values of p 
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Fig. 21. The normalized partial sum vs. n for map (5) (A)  and map (8) ( + )  

for both maps fall roughly into the range of Farmer's results, i.e., 
/ ? -  0.45 _+ 0.04, but still it is difficult to conclude from the numerical data 
that/~ is the same for both maps as conjectured by Farmer. (6) 

All the computations have been performed in 16-byte arithmetic (128 
bits). 

5. S U M M A R Y  A N D  D ISCUSSION 

We have thoroughly investigated the dynamical system (a one-dimen- 
sional unimodal map) derived from the symbolic binary tree of one-dimen- 
sional unimodal maps. The corresponding period-doubling fixed point g(x) 
and the scaling constant e are found after applying a renormalization 
operation. The period-doubling fixed point is found to depend on the 
details of the original unimodal map, while the scaling constant equals the 
left endpoint derivative of the original map at the largest parameter value. 
This approach of analysis can be applied to any kind of binary tree. In this 
study we use the superstable parameter value of the periodic interval in the 
tree, i.e., the parameter value such that u = 0. We expect to get the same 
results by using parameter values such that the stability u = a, where lal ~< 1 
instead. 

The presentation function and the scaling function are also computed. 
Because of the special properties of this system, they are different from the 
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results of one-dimensional  quadrat ic  maps. The thermodynamics  of the 
system is discussed. It is found that  there is no phase transition. 

As we have seen, periodic windows in the chaotic regime exhibit a 
remarkably  rich structure. In order to study this structure, we constructed 
approximately  8000 periodic windows, organized on a complete binary 
tree. Then we used this construct ion to calculate the percentage of chaotic 
orbits in the chaotic regime. Our  results confirm the results of Farmer.  We 
also found that  the product  of the scaling constant  of the sequence Q and 
the length of  the corresponding interval m ( Q )  approximately  equals 1. 
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